Extended Abstract

Motivation As drones take on increasingly complex real-world tasks like navigating dense forests
or disaster zones, demand for robust autonomous navigation systems has grown. However, prior work
focuses on static or structured environments, leaving the problem of generalizing to randomized,
obstacle-filled 3D spaces relatively underexplored. Traditional planning methods struggle with
adaptability. While reinforcement learning (RL) shows promise, many RL-based UAV studies fail
to evaluate generalization across unseen configurations. We address this gap by comparing Soft
Actor—Ceritic (SAC) and Behavior Cloning (BC) in a custom simulated environment featuring dynamic
tree placements and randomized start-goal conditions. We aim to evaluate which method better
supports robust and adaptable autonomous drone navigation in complex, unpredictable environments.

Method We designed our project using using the drone PyBullet simulator RL-pybullets-cf Bin;
schmid| (2022), and used it to model our drone agent navigating through our generated 3D environ-
ments with static obstacles. As part of our simulations, we model the agent as our drone, define
a goal state, and randomly generate trees as obstacles in our environment. We custom designed a
reward function that incorporates the following components to determine the action’s reward to the
drone: The step component to encourage the drone to minimize the number of total steps the drone
takes, the collision component to penalize collisions and proximity to trees, the goal component that
rewards the drone for reaching the goal and moving towards the goal, and a stability component to
encourage the drone to move in a stable manner. We also define two models, a Behavioral Cloning
(BC) model that we use as our baseline, and it uses expert trajectories from the A* planner to train a
policy mg(a | s) via supervised learning. Our main model is Soft Actor Critic (SAC), which learns a
stochastic policy by maximizing expected return and entropy, and in our implementation, we take the
minimum of two critics to reduce overestimation bias.

Implementation We generate a PyBullet scene with an open field (O trees) or a forest with 20-30
randomly placed trees. For each training episode, we generate a new scene, with random tree sizes,
shapes, and locations in the forest scenario. Next, we trained the BC and SAC models. For BC, we
generate a fixed dataset of expert trajectories via an A* planner offline, and train a behavioral-cloning
policy on these demonstrations for 100 epochs. For SAC, we initialize SAC’s actors and twin critics
and train the policy for 750 episodes using our reward function. We evaluate the models on both the
open field environment and the forest environments, using 1000 rollouts per environment type. We
report Success Rate, Average Reward, Collision Rate, and Average Steps for the successful runs.

Results Results are in Table 1. Without trees, BC outperforms SAC with the highest average reward
(-30.38). SAC outperforms BC with trees with the highest success rate (45.1%) and less collisions.
Average episode length is similar between both models with trees, but different (and greater) without.

Discussion BC outperforms SAC in environments with trees, likely due to SAC heavily relying on
obstacle terms in its reward function for strong reward signal. SAC outperforms BC in environments
with trees by unifying planning and control in its reward function, unlike BC expert demonstrations,
which separate the two between an A* planner and PID controller. This also demonstrates the benefit
of penalizing collisions with and proximity to obstacles through reward terms. SAC and BC both
perform better with trees, suggesting that SAC relies on the presence of obstacles to avoid sparse
rewards, while BC may over fit in simpler environments. It is crucial that the relative weighting of
SAC reward terms does not allow the agent to maximize rewards without actually reaching the goal.
We refined the reward function to further encourage proximity to and arrival at the goal.

Conclusion and Future Work SAC’s shortcomings without trees cannot be resolved by modifying
the reward function when training in such environments (perhaps by removing obstacle terms or
increasing weights on other terms). This would prevent the training of a general model in environments
both with and without trees (which requires the same reward function to be used in all of those
environments). Instead, the SAC actor can be initialized to BC’s distribution, which has consistent
performance in environments with and without trees. This may reduce the effects of overestimation
or randomness in initial Q values. Training SAC in a more off policy manner may improve efficiency
when environments are complex (so rolling out often is expensive). Our environment’s complexity
can be extended with conditions like moving obstacles and extreme weather.

Forest or Field: It Drone Matter

Sarah Barragan Karan Bhasin
Department of Computer Science Department of Computer Science
Stanford University Stanford University
sabarrag@stanford.edu ksbhasin@stanford.edu
Sukrut Oak

Department of Computer Science
Stanford University
sukrut@stanford.edu

Abstract

We aim to contribute to the field of drone navigation research by designing en-
vironments with randomly placed obstacles and goals, and by training an agent
to optimally navigate such environments. We experiment with both a behavioral
cloning model and a soft actor critic model, and compare the performance of the
two in environments both with and without trees. We find that SAC falls short of
BC’s performance in environments without trees due to sparse reward signal, but
that is exceeds BC’s performance in environments with trees by unifying planning
and control in a reward function that also enforces useful penalties for proximity
to and collisions with obstacles. A challenge was ensuring that SAC did not find
ways to maximize rewards without actually reaching the goal. Future work entails
training a general model that works across environments with and without trees,
increasing the environment’s complexity in order to further challenge the agent,
and improving SAC model efficiency through more off policy techniques.

1 Introduction

The use of drones, or unmanned aerial vehicles (UAVs), has risen dramatically in recent years,
with applications expanding across a wide range of fields. In agriculture, drones equipped with
multispectral and thermal sensors are transforming crop management through disease monitoring and
yield estimation, giving farmers actionable insights to optimize resources and improve sustainability
Folio3 AgTech|(2024). In the retail sector, companies like Walmart, in partnership with Alphabet’s
Wing, are rolling out drone delivery services in select U.S. cities, offering customers the ability to
receive groceries and household items in under 30 minutes Marshall and Dave|([n. d.]). Yet the role
of drones extends beyond consumer convenience. In emergency response, drones are increasingly
vital for search and rescue missions in disaster zones, where their ability to access hard-to-reach areas
and provide real-time data can save lives |Ghosh| (2025).

As drones take on more dynamic and complex tasks, the need for robust autonomous navigation
systems that operate without human intervention becomes critical. Traditional systems that rely
on static maps or human control fall short in unpredictable environments. For drones to perform
effectively in real-world settings, they must be able to perceive their surroundings and make real-time
decisions |Aburaya et al.|(2024). Reinforcement learning (RL) offers a compelling solution. Rather
than being dependent on pre-labeled data, RL agents learn through trial and error by using reward
and penalty signals to guide their behavior|Liu et al.| (2024)). This makes RL particularly suitable for
navigation tasks in uncertain, obstacle-rich environments where flexibility and adaptability are key.

Stanford CS224R 2025 Final Report

Among RL methods, Soft Actor—Critic (SAC) has emerged as especially effective. [Liu et al.| (2024)
showed that SAC enabled robots to navigate dynamic environments using LiDAR, achieving faster
training and higher success rates. SAC has also shown strong performance in vision-based drone
navigation, where adapting to new surroundings is crucial |Aburaya et al.[| (2024). Compared to
supervised approaches like Behavioral Cloning (BC), which rely on expert demonstrations and often
fail to generalize to novel environments, SAC learns directly from experience and adjusts its strategy
as conditions change [Tedrake| (2024).

Our project investigates the use of Soft Actor—Critic for enabling drones to autonomously navigate
randomized, obstacle-filled 3D environments. We use a custom PyBullet simulation populated
with randomly placed trees, requiring the drone to reach a goal from a random start without prior
environmental knowledge. We evaluate SAC’s performance against a Behavior Cloning baseline to
assess which method generalizes better to unseen obstacle configurations.

/ Data Generation \ 4 Training)

Behavior Cloning ‘ ‘ Actor Policy ‘

PyBullet Drone
Simulator

Twin Critics
Empty Forest Forest w/ Trees
-.nml START @ @ k /
T~ ~ -~ ~

@‘% @ / Testing \

test train/test 1000 unseen rollouts
I per environment type

offline data / \

generation with Behavior Cloned Soft-Actor Critic
A* for training

_ AL Mol oo y

Figure 1: Simulation Workflow Diagram

2 Related Work

Reinforcement learning (RL) has become an increasingly popular approach for enabling autonomous
aerial navigation, especially in environments where traditional planning and control methods may
struggle due to unpredictability or partial observability. A broad range of research has explored how
RL can help UAVs avoid obstacles, maintain flight stability, and reach target locations. However,
relatively few studies tackle the more difficult task of navigating randomized, obstacle-filled 3D
environments while ensuring robust generalization across unseen configurations.

Several prior works explore RL algorithms such as DQN and PPO. For example, [Kalidas et al.
(2023)) evaluated DQN, PPO, and SAC for UAV navigation across complex environments including
woodland scenes and dynamic objects. Their study found that DQN, limited by its discrete action
space, produced abrupt, inefficient flight patterns in cluttered spaces, while PPO underperformed in
large, vision-based environments due to its on-policy inefficiency and poor sample reuse. Although
PPO was more stable than DQN, its learning performance degraded as environment complexity
increased. These findings are echoed by (Chikhaoui et al.|(2022) who introduced a PPO-based UAV
framework that achieved up to 90% success in 3D obstacle navigation tasks. However, as the number
of obstacles increased so did the performance of the agent. Additionally, their model relied on a
simplified discrete action space and was prone to decision paralysis in cluttered scenes, where the

UAV would occasionally stall mid-flight, highlighting PPO’s limitations in generating responsive and
fine-grained control policies for densely populated 3D environments.

By contrast, Soft Actor—Critic (SAC) has emerged as a leading choice for continuous control tasks
due to its sample efficiency, stability and effectiveness in continuous control tasks. [Kalidas et al.
(2023)) found that SAC outperformed both DQN and PPO in navigating visually rich environments
with complex layouts, though even SAC was limited by the use of fixed goal positions and static
obstacle arrangements, reducing its applicability to dynamic or unpredictable missions.

Further demonstrating SAC’s strengths, |Liu et al.| (2024) applied it to LiDAR-based ground robot
navigation in cluttered environments, showing faster convergence, higher success rates, and more
optimal trajectories than baseline methods. Their agent handled narrow passages and dynamic scenes
effectively, underscoring SAC’s suitability for continuous control in complex settings. However, the
study focused on 2D ground robots with fixed obstacle layouts, lacking the challenges of 3D aerial
navigation such as altitude control and dynamic obstacles. Thus, while promising, their findings do
not fully address generalization in randomized, 3D UAV environments.

To improve SAC’s adaptability to such aerial tasks, Hwang et al.| (2023) proposed Stepwise SAC
(SeSAC). Designed for disaster scenario UAV simulations, this method trains an agent by gradually
exposing it to more difficult and complex environments. As SeSAC gradually increased environment
difficulty during training it achieved high success rates in reaching goals while avoiding obstacles.
Nonetheless, SeSAC still relied on structured, pre-designed environments and was not evaluated
in settings with randomized obstacles or goal distributions, leaving its ability to generalize across
unseen configurations without testing.

In contrast to these RL-based methods, Behavior Cloning (BC), a supervised imitation learning
approach, is also widely used for UAV control when expert trajectory data is available. However,
BC’s reliance on demonstration data causes performance to degrade in novel settings. For instance,
Bansal et al.| (2024) introduced RaCIL, a hybrid of ray-tracing and BC, and found that while BC could
imitate expert flights in known environments, it consistently failed in unseen scenarios, requiring
reinforcement learning enhancements like GAIL or PPO for reliable performance. Similarly, Wan
et al.| (2023)) showed that even DAgger-based training, which augments BC with corrective feedback,
could not ensure robustness in dynamic or visually complex tasks due to its dependence on simulated
data.

Given these limitations in both SAC and BC applications to UAV navigation, our project seeks to
address this gap by evaluating the performance of Soft Actor—Critic and Behavior Cloning in a
more challenging and realistic setting. Specifically, we investigate how well each method enables
a quadrotor to navigate randomized, obstacle-filled 3D environments using a custom PyBullet
simulation with dynamically placed tree obstacles. Unlike prior work that focuses on static or
simplified environments, our approach emphasizes generalization to unseen obstacle configurations
and evaluates target position success from randomized start and goal positions. By directly comparing
SAC and BC under identical conditions, our project aims to better understand their respective
strengths and limitations in the context of robust, real-world UAV navigation.

NOTE: In addition to these methodological gaps, it is also important to consider the accessibility
and reproducibility challenges present in prior work. High-fidelity simulators like AirSim [Shah
et al.| (2017) have enabled sophisticated SAC-based aerial learning in realistic environments, but
they come with hardware requirements that often necessitate GPU-enabled systems and complex
build configurations. During our own literature and codebase review, we found that many existing
SAC implementations for UAVs were either tied to such platforms (rendering them inaccessible
on our available machines), overly reliant on static environments, or lacked sufficient open-source
documentation for reproducibility.

3 Method

To accomplish the tasks in our problem statement, we forked the drone PyBullet simulator
RL-pybullets-cf Binschmid (2022), and used it to model our drone agent navigating through our
generated 3D environments with static obstacles. As part of our work, we have the following several
components to our project.

3.1 Components of our Simulation

Drone (Agent): We model the agent as a quadcopter drone and represent the state using the drone’s
position, orientation, linear velocity, and angular velocity. The PyBullet simulation software enables
us to provide controls to the drone as outputs of our learned reinforcement learning policies. The
drone’s environment is also represented in the drone’s state, including the positions and sizes of the
obstacles.

Goal State and Waypoints: The objective of our drone is to fly along a predefined trajectory in 3D
space. We generate a sequence of waypoints along the trajectory, and at every timestep, the current
goal is the next waypoint on the trajectory. The episode is successful if the drone reaches the final
waypoint within a small radius € = 3.0.

Trees (Obstacles): To simulate the obstacles, we generate various numbers of trees to represent
different types of environments, as shown in Figure 1. The first set of environments are generated
without trees (and thus with no obstacles), while the final set of environments are generated with
20-30 trees randomly placed throughout the space. Each of the trees are also randomly generated to
have different sizes, with some trees having shorter trunks and small leaf components and other trees
having taller trunks with larger leaf components.

3.2 Examples of Environmental Setups with Random Configuration of Trees

Figure 2: Example 1 of Environmental Setups with Random Configuration of Trees

Figure 3: Example 2 of Environmental Setups with Random Configuration of Trees

3.3 Reward Function Components

Our reward function incorporates the following components to determine the action’s reward to the
drone:

Step Component is a a penalty of 0.5 for each additional step the drone takes, and this is meant to
encourage the drone to take action and avoid pausing or not moving. We found that by adding this
reward, the drone reached the goal state faster and often prevented the drone from staying in place.

Collision Component is a penalty of 100 for colliding with a tree, and a smaller penalty of 1 when
flying too close to a tree. We designed these penalties to heavily discourage the tree from colliding
into trees, and the smaller penalty helps guide the drones to stay away from the general vicinity of
the trees.

Goal Component consists of a reward of 20 for reaching the goal, and a penalty proportional to the
drone’s distance from the goal to encourage accuracy. This second component discourages the drone
from moving away from its current goal.

Stability Component is a penalty of 10 if the drone tilts excessively. This controls related reward
encourages the drone to remain steady and fly with stability.

3.4 Models

Behavioral Cloning (BC): Our first model, which we use as our baseline, is a Behavioral Cloning
(BC) Model that uses expert trajectories from the A* planner to train a policy 7y (a | s) via supervised
learning. The loss minimizes the negative log-likelihood of expert actions as follows:

Lyc =E(sa-)~p [~logma(a” |)]

Soft Actor Critic (SAC): As mentioned previously, our main model that we test and develop for our
environments is a Soft Actor Critic (SAC) model, which learns a stochastic policy by maximizing
expected return and entropy. The actor maximizes:

J(7) = Es,0)~8[Q(s,a) — alogm(a | s)]
The critic minimizes the Bellman error using:
y=7+VEumr [Q(s',a") — alogm(a' | §')]
‘We take the minimum of two critics to reduce overestimation bias.

4 Experimental Setup

An overview of our experimental setup is illustrated in Figure 1. Section 4.1 describes the model
training, and section 4.2 describes model evaluations.

4.1 Model Training

1. Environment Generation: The first step is to generate a PyBullet scene with an open
field (O trees) or a forest with 20—30 randomly placed trees. For each training episode, we
generate a new PyBullet scene, with random sizes, shapes, and locations for the trees in the
forest scenario.

2. Expert Demonstrations and BC Pre-training: We generate a fixed dataset of expert
trajectories via an A* planner offline, and train a behavioral-cloning policy on these demon-
strations for 100 epochs.

3. SAC Fine-tuning: We initialize SAC’s actors and twin critics and train the policy for 750
episodes using our defined reward function. The episodes each terminate on success, after a
collision, or after 2400 steps.

4.2 Model Evaluations

1. Testing: Both BC and SAC are evaluated over 1000 rollouts per environment type. We report
the Success Rate, Average Reward, Collision Rate, and Average Steps for the successful
runs.

5 Results

During testing, we rolled out the policies for 1,000 episodes (results displayed in Table 1). Success
rate measures the percentage of episodes in which the drone reaches the final goal within e distance,
collision rate measures the percentage of episodes in which the drone collides with an obstacle, and
average steps is the average length of an episode. We trained and tested both models in environments
without trees, and in environments with a random number of trees between 20 and 30, as shown in
Figure 4.

r o000 r no.s

Figure 4: Example Drone Following SAC Policy

| Model | Number of Trees | Success Rate | Average Reward | Collision Rate | Average Steps

BC 0 0.39 -30.38 0.0 49.2
SAC 0 0.171 -169.01 0.0 221.3
BC 20-30 0.434 -46.73 0.237 18.3
SAC 20-30 0.451 -38.80 0.168 12.3

Table 1: Test performance of BC and SAC models.

5.1 Qualitative Analysis
5.1.1 Behavioral Cloning (BC)

During training, behavioral cloning, with the A* planner’s expert trajectories, worked well to avoid
the trees since the A* provided the drone with the best path to the goal. This performance was
reflected in the evaluation simulations, especially since the drone was avoiding the trees, moving in
the general direction of the target, and visually performed well on the empty field environments as
well.

5.1.2 Soft Actor Critic (SAC)

During training, the drone made many mistakes at first, like going in the wrong direction and
colliding with the trees. But as the model learned to avoid these behaviors, the drone slowly began
navigating around the trees and moving in the correct direction, even in environments with a lot of
trees. Unfortunately, this learning wasn’t reflected in the open field environments, which might have
been because there weren’t any trees in the agent’s state, so the drone often stayed still and didn’t
move towards the target, likely caused by some form of reward hacking.

5.2 Quantitative Evaluation

Success Rate: The highest success rate (45.1%) is achieved by SAC in environments that have
trees, with BC succeeding only slightly less frequently in such environments. Without trees, the
performance of the two models is significantly more different, with BC succeeding 2.28 times as
often as SAC.

Average Reward: The highest average reward (-30.38) is achieved by BC without trees, with SAC
having a significantly lower average reward of -169.01 in such environments. In environments with
trees, the average reward is much more similar between the two models.

Collision Rate: With no trees, the collision rate is 0 for both models since collisions are impossible.
With trees, SAC’s collision rate is significantly lower than that of BC. Specifically, the BC model
collides 1.41 times as often as the SAC model.

Average Steps: The average episode length is similar between both models with trees (12.3 for SAC
and 18.3 for BC), but very different without. BC takes 2.69 as many steps without trees compared to
with, while SAC takes 17.99 as many.

6 Discussion

* With no trees, BC outperforms SAC due to weak SAC reward signal. BC’s performance
is more consistent than SAC’s across environments with and without trees.
Without trees, BC achieves a notably greater success rate (39.1% compared to SAC’s 17.1%)
and average reward (-30.38 compared to SAC’s -169.01).
This is likely because the SAC reward function relies on the presence of obstacles in order
to provide a strong reward signal, since collisions with and proximity to trees are penalized
significantly. Without trees, the rewards are more sparse, and potentially more similar across
many different states, making it more difficult for the drone to determine what action to take
from a given state. The effects of randomness and overestimation in the initial Q values may
be exasperated by the rarity of frequent or extreme rewards. This hypothesis is reinforced by
high number of average steps taken by the SAC agent (221.3 compared to BC’s 49.2). This
behavior potentially reflects the SAC model’s struggle to confidently determine the optimal
actions to take. The high step count is likely a significant contributor to the low average
reward, as each additional step results in an additional penalty.
Unlike SAC, the BC model does not experience such significant differences in performance
between the environments with trees and without. In fact, performance is remarkably
consistent (for with trees and without, respectively, the success rates are 43.4% and 39%,
the average rewards are -46.73% and -30.38%, and the average steps are 18.3 and 49.2). BC
accomplishes this by not relying on a reward function that depends heavily on interactions
with obstacles.

* SAC outperforms BC with trees by accounting for drone control factors and by penal-
izing collisions with trees. This highlights the benefits of unifying planning and control
in a single reward function.

With trees, SAC achieves a much lower collision rate (16.8% relative to BC’s 23.7%), as
well as a greater average reward (-38.80 compared to BC’s -46.73) and a greater success
rate (45.1% compared to BC’s 43.4%).

This is likely in part because the BC expert demonstrations are generated using two separate
techniques: an A* planner that is responsible for planning the trajectory that avoids the
obstacles, and a PID controller that is responsible for determining the drone control factors
necessary to execute that trajectory. In contrast, the SAC reward function accounts for both
trajectory planning factors (proximity to and collisions with obstacles, as well as awarding
arrival at the goal and penalizing distance from it), in addition to drone control factors such
as tilt and velocity. In doing so, the SAC model ensures that the planned trajectory not only
optimizes for efficiently reaching the goal while avoiding obstacles, but also that the planned
trajectory is one that can be practically taken by a drone given its control constraints. The
fact that a reward function can be an effective way of unifying planning and control suggests
that reinforcement learning techniques may be useful in other drone navigation settings, as
well as for other kinds of vehicles and robots.

The BC expert demonstrations, by separating planning and control, fall short of meeting
SAC’s performance. This highlights a potential shortcoming of the BC planning and control
techniques that reinforcement learning techniques like SAC can help to resolve. When

visualizing the BC trajectories, we noticed that the drone would often stay still or fall to the
ground. This suggests that the planned A* trajectories did not effectively account for drone
control factors. For example, it may be possible, given some environment, for A* to plan an
efficient, short, and fast trajectory that avoids all obstacles. However, this trajectory may be
unrealistic for a drone to actually practically execute due to its control limitations, resulting
in the undesirable behaviors that we observed.

The significantly lower collision rate of SAC compared to BC also helps demonstrate the
effectiveness of the obstacle collision and proximity penalties in the SAC reward function.
This disparity also suggests that the use of penalties in reinforcement learning techniques
can be more effective that the avoidance techniques used in other methods like A*.

* Both models perform better with trees than without (achieving a higher success rate
and average reward), while also taking less steps on average, suggesting more efficient
progress toward the goal.

This result is expected for SAC, given that in environments with no trees, the reward signal
is sparse, resulting in the actor taking many steps that do not result in effective progress
in the direction of the goal. For behavioral cloning, this result is more unexpected. Given
that the BC model simply emulates experts demonstrations, the quality of the expert demon-
strations is the primary determinant of the model’s success. Thus, this result suggests that
the expert’s performance is consistent across environments with and without trees, and that
expert performance does not worsen as a result of obstacles being introduced.

The fact that both models achieve better performance while taking less steps in the envi-
ronments with trees suggests that, potentially, the added complexity of the environment
(through obstacles) is somehow beneficial for encouraging the models to more frequently
and efficiently actually arrive at the goal. For SAC, this is likely due to the stronger reward
signal, which encourages the model to more decisively take actions from states and make
progress in an intended direction, while taking the minimal number of steps needed to do so.
For BC, this may be because the neural network over fits to the simpler expert behaviors
exhibited in the environments with no trees. When trees are added, the expert may exhibit
more complex patterns in its actions and trajectories that the neural network can learn
without over fitting. It turn, it also generalizes better during testing, achieving its objective
more often and while reducing the number of unnecessary steps.

* SAC models may attempt to optimize for achieving high rewards without actually
accomplishing the task.
Early in our experiments, the SAC model achieved a high average reward but a low success
rate. We hypothesize that this is because the model learned ways to maximize rewards
without actually reaching the objective. We resolved this by adjusting our reward function to
further penalize distance from the goal and to further award arrival at the goal, increasingly
the effects of these terms relative to the other terms in the reward function. We found these
modifications to be quite effective.
The need for, and benefits of, these adjustments underscores the importance of being
wary when applying reinforcement learning techniques, as it is crucial that the reward
function accurately reflects the relative importance of the different environmental factors
(like obstacles), agent characteristics (like tilt), and task objectives (like reaching the goal).
Otherwise, there is a risk that the model seemingly performs well due to its high rewards,
but is actually not exhibiting behavior that is considered optimal in practice.

7 Conclusion and Future Work

We hope that our work is helpful for understanding the benefits of SAC over BC for encouraging
obstacle avoidance and for unifying planning and control, and the reasons why these models differ in
performance. However, it is also important to take note of SAC’s shortcomings in the environments
without trees, which likely result from reward sparsity. We also hope that our environment can
be extended in the future to further challenge the drone, and that our models can be trained more
efficiently.

* Before SAC training, initializing the actor to the trained BC model may help in
developing a general model that can be deployed in environments both with and
without trees, rather than in only one of these kinds of environments.

To improve the performance of SAC in the environment with no trees, an intuitive solution
is to remove the reward function terms that are related to obstacle collision and proximity,
and to increase the weight on other terms such as those related to control and distance to
the goal. Doing this may help to increase the density of rewards and in turn allow the actor
to more easily determine what action is optimal from a given state. This may also help
to reduce negative effects from overestimation and randomness in the initial Q values (for
example, if the actor takes an action due to it having a high Q value that does not accurately
reflect how useful that action actually is).

However, this solution has a shortcoming, which is that it requires changing the weights
of the terms in the reward function depending on the number of trees. This is undesirable
because ultimately, it is most useful to develop a general model that can perform well in a
variety of environments with vastly differing numbers of trees. Developing such a model
requires training in such a variety of environments, and as a result, using the same reward
function across those environments.

An alternative solution to the challenge of low SAC reward signal without trees (one that
ensures that SAC can still generalize) is to improve how the SAC model is initialized. This
can be accomplished by initializing the actor to the trained BC model, and also potentially
by assigning a higher Q value to taking action a from state s, relative to the other actions,
if the probability of a given s, according to the trained BC model’s distribution, is higher
relative to the other actions. Given that the BC model has consistent performance both in
environments with trees and without, this approach is likely to be effective in reducing the
effects of inaccurate initial Q values and in allowing the actor to more easily distinguish
between the values of the different actions from a given state.

The drone can be trained to accomplish more challenging tasks by extending the
environment, perhaps with weather conditions or moving obstacles.

One contribution of our work is that our environment can be extended to further challenge
the drone and to reflect real world scenarios. For example, drones may often have to
navigate through weather conditions like snow or wind, or account for moving obstacles in
the air such as other vehicles or birds. Our environment can be modified to include such
environmental factors. The reward function must be updated to include any new relevant
terms, including penalties, and then the SAC model can be trained and tested in the modified
environment. Doing this may be helpful in order to understand how a drone can best respond
to the variety of complex and dynamic real world conditions that it is bound to encounter. It
may also be helpful to test in environments of different sizes, with different tree densities
(for example, a smaller environment with more trees) in order to ensure that the model can
generalize.

SAC model efficiency could be increased by training in a more off policy manner.

The aforementioned environmental modifications may result in a more complex environment,
and, as a result, roll outs that are more computationally heavy. Currently, we frequently roll
out our SAC policy in order to collect the most relevant and updated trajectories that are most
reflective of the current state of our model. We then use these recent trajectories to update
the actor and the critics. Doing this is likely quite important for our model’s performance.
However, this process of rolling out so often, in practice, may be very inefficient and
expensive, given that many drone simulation environments may be significantly more
complex than the ones that we experimented with. For example, such environments may
have many more dynamic environmental factors that interact with each other and with the
drone in various different and complicated ways.

Thus, it could be helpful to experiment with a more off policy version of our SAC model
that rolls out the policy less often. Instead, such a training process could entail sampling
from a replay buffer that contains older rolled out trajectories. It could then be helpful to
weight the relative effects of these sampled trajectories in the update process based on how
recent they are and based on how much the model has changed since they were collected.
Thus, an ultimate future goal could be to efficiently train a general model that can be deployed
across environments containing a variety of complex obstacles and other environmental
factors.

8 Team Contributions

» Sarah Barragan worked on implementing the BC model and generating the environment.
We all equally worked on writing up the results, poster, and final paper.

» Karan Bhasin worked on implementing the SAC model and running the evaluations. We
all equally worked on writing up the results, poster, and final paper.

¢ Sukrut Oak worked on implementing the SAC model and running the evaluations. We all
equally worked on writing up the results, poster, and final paper.

Changes from Proposal We updated the contributions based on the work that was needed to set up
the environment that we ended up using and based on the time needed to implement our models.

References

A. Aburaya, H. Selamat, and M. T. Muslim. 2024. Review of Vision-Based Reinforcement Learning
for Drone Navigation. International Journal of Intelligent Robotics and Applications 8, 4 (2024),
974-992. https://doi.org/10.1007/s41315-024-00356-9

Harsh Bansal, Vyom Goyal, Bhaskar Joshi, Akhil Gupta, and Harikumar Kandath. 2024. RaCIL: Ray
Tracing based Multi-UAV Obstacle Avoidance through Composite Imitation Learning. In 2024
IEEE 20th International Conference on Automation Science and Engineering (CASE). 2188-2193.
https://doi.org/10.1109/CASE59546.2024.10711835

Daniel Binschmid. 2022. RL-pybullets-cf: Reinforcement Learning Environments for Crazyflie in
PyBullet. https://github.com/danielbinschmid/RL-pybullets-cf. GitHub repository,
commit accessed 4 Jun 2025.

Khalil Chikhaoui, Hakim Ghazzai, and Yehia Massoud. 2022. PPO-based Reinforcement Learning
for UAV Navigation in Urban Environments. In 2022 IEEE 65th International Midwest Symposium
on Circuits and Systems (MWSCAS). 1-4. https://doi.org/10.1109/MWSCAS54063.2022 |
9859287

Folio3 AgTech. 2024. The Role of Drones in Farming in 2024. Online blog post. https:
//agtech.folio3.com/blogs/role-of-drones-in-farming-in-2024/ Accessed June 9,
2025.

Baisali Ghosh. 2025. Drones for Search and Rescue Operations. Blog post on FlytBase. https:
//www.flytbase.com/blog/drones-for-search-rescue Accessed June 9, 2025.

Ha Jun Hwang, Jaeyeon Jang, Jongkwan Choi, Jung Ho Bae, Sung Ho Kim, and Chang Ouk Kim.
2023. Stepwise Soft Actor—Critic for UAV Autonomous Flight Control. Drones 7,9 (2023), 549.
https://doi.org/10.3390/drones7090549

Amudhini P. Kalidas, Christy Jackson Joshua, Abdul Quadir Md, Shakila Basheer, Senthilkumar
Mohan, and Sapiah Sakri. 2023. Deep Reinforcement Learning for Vision-Based Navigation
of UAVs in Avoiding Stationary and Mobile Obstacles. Drones 7, 4 (2023), 245. https:
//doi.org/10.3390/drones7040245

Y. Liu, C. Wang, C. Zhao, H. Wu, and Y. Wei. 2024. A Soft Actor—Critic Deep Reinforcement-
Learning-Based Robot Navigation Method Using LiDAR. Remote Sensing 16, 12 (2024), 2072.
https://doi.org/10.3390/rs16122072

Aarian Marshall and Paresh Dave. [n. d.]. Walmart Goes Big With Drone Delivery Expansion. Wired
([n.d.]). https://www.wired.com/story/walmart-wing-expand-drone-delivery/ Ac-
cessed June 6, 2025.

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. 2017. AirSim: High-Fidelity Visual

and Physical Simulation for Autonomous Vehicles. arXiv preprint arXiv:1705.05065 (2017).
https://doi.org/10.48550/arXiv.1705.05065| v2 revised July 18, 2017.

10

https://doi.org/10.1007/s41315-024-00356-9
https://doi.org/10.1109/CASE59546.2024.10711835
https://github.com/danielbinschmid/RL-pybullets-cf
https://doi.org/10.1109/MWSCAS54063.2022.9859287
https://doi.org/10.1109/MWSCAS54063.2022.9859287
https://agtech.folio3.com/blogs/role-of-drones-in-farming-in-2024/
https://agtech.folio3.com/blogs/role-of-drones-in-farming-in-2024/
https://www.flytbase.com/blog/drones-for-search-rescue
https://www.flytbase.com/blog/drones-for-search-rescue
https://doi.org/10.3390/drones7090549
https://doi.org/10.3390/drones7040245
https://doi.org/10.3390/drones7040245
https://doi.org/10.3390/rs16122072
https://www.wired.com/story/walmart-wing-expand-drone-delivery/
https://doi.org/10.48550/arXiv.1705.05065

Russ Tedrake. 2024. Chapter 21 — Imitation Learning. Lecture notes in *Underactuated

Robotics*. https://underactuated.mit.edu/imitation.html Available online at un-
deractuated.mit.edu; accessed June 9, 2025.

Yu Wan, Jun Tang, and Zipeng Zhao. 2023. Imitation Learning of Complex Behaviors for Mul-

tiple Drones with Limited Vision. Drones 7, 12 (2023), 704. https://doi.org/10.3390/
drones7120704

11

https://underactuated.mit.edu/imitation.html
https://doi.org/10.3390/drones7120704
https://doi.org/10.3390/drones7120704

	Introduction
	Related Work
	Method
	Components of our Simulation
	Examples of Environmental Setups with Random Configuration of Trees
	Reward Function Components
	Models

	Experimental Setup
	Model Training
	Model Evaluations

	Results
	Qualitative Analysis
	Behavioral Cloning (BC)
	Soft Actor Critic (SAC)

	Quantitative Evaluation

	Discussion
	Conclusion and Future Work
	Team Contributions

